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SUMMARY

This paper studies the use of a generalized hierarchical basis transformation at each level of a multilevel
block factorization. The factorization may be used as a preconditioner to the conjugate gradient method,
or the structure it sets up may be used to de�ne a multigrid method. The basis transformation is
performed with an averaged piecewise constant interpolant and is applicable to unstructured elliptic
problems. The results show greatly improved convergence rate when the transformation is applied for
solving sample di�usion and elasticity problems. The cost of the method, however, grows and can get
very high with the number of non-zeros per row. Published in 2002 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Hierarchical basis (HB) preconditioners are composed of a transformation of the nodal basis
coe�cient matrix A to a hierarchical basis, a preconditioning of this HB coe�cient matrix, and
a transformation of this preconditioning back to the nodal basis [1–3]. For elliptic problems,
the preconditioned matrices have condition number O((log(h−1))2) in two dimensions and
O(h−1) in three dimensions, where h is the mesh size. Although these condition numbers are
poorer than for multigrid methods, HB preconditioners may be more robust, relying only on
local properties of the mesh in their analysis, while giving scalability that is better than for
many other preconditioners.

∗ Correspondence to: E. Chow, Lawrence Livermore National Laboratory, L-560, Box 808, Livermore, CA 94551,
U.S.A.

† E-mail: echow@llnl.gov
‡ This article is a US Government work and is in the public domian in the USA.

Contract=grant sponsor: U.S. Department of Energy by University of California Lawrence Livermore National Lab-
oratory; contract=grant number: W-7405-Eng-48.

Received 15 January 2002
Published in 2002 by John Wiley & Sons, Ltd. Revised 12 August 2002



106 E. CHOW AND P. S. VASSILEVSKI

HB preconditioners are typically applied to �nite element matrices with adaptive local
mesh re�nement where the hierarchical basis is clearly de�ned. Recently, however, meth-
ods have been developed to construct ‘generalized’ hierarchical bases for completely un-
structured problems (i.e. no nested meshes) so that HB preconditioners may be applied
[4–7]. These techniques sequentially select ‘�ne’ grid points as those that are near the
center of two or three other grid points; these latter grid points are then labeled as ‘ver-
tex parents’. The vertex parents serve as the grid points on the coarser
mesh.
This paper proposes a method for unstructured problems that assumes that an approximate

hierarchical basis for the �nite element space is not available or is di�cult to �nd. Instead,
a very simple generalized hierarchical basis is used, based on coarsening and interpolation
ideas from algebraic multigrid (AMG) methods. The basis is constructed algebraically. The
possibly poorer A-orthogonality of the new basis vectors between di�erent levels translates
into a transformed matrix that is not as strongly block diagonal and is less well-conditioned
than when a good HB transformation can be found. To compensate for this, we use a block
factorization preconditioner instead of the usual block diagonal or block Gauss–Seidel pre-
conditioners at each level of the transformed matrix. In principle, the block factorization
preconditioner can be made more accurate if necessary when the generalized HB transfor-
mation is poor. The combination of the HB transformation with the approximate block fac-
torization can be viewed as a modi�ed block factorization in the sense that certain vectors
that are in the near-nullspace of A remain in the near-nullspace of the approximate Schur
complement.
The approximate block factorization sets up a structure very similar to that of multigrid

methods. In particular, coarse grid operators are constructed, as well as operators that act
as prolongators. The multilevel block factorization that is recursively de�ned at each level
may be used as a smoother to a multigrid process with the above components. This de-
�nes a type of W -cycle multigrid. More precisely, the kth coarse level grid is visited O(k)
times (versus O(2k) times in a model 2-D or 3-D geometric coarsening for a true W -
cycle).
Methods that are related to HB preconditioners include those that use a hierarchical ordering

of the grid points, such as the classical two-level methods, e.g. References [8, 9], and some
incomplete LU factorization techniques, e.g. References [10, 11]. Transformation to a hier-
archical basis using second-generation wavelets has been explored in [12]. Multilevel block
factorizations can also be connected to multigrid methods, and indeed, for many problems,
a hierarchical basis transformation is not necessary to get multigrid convergence rates, e.g.
References [13, 14].
The proposed hierarchical basis block factorization (HBBF) is a middle ground between

algebraic multigrid methods and multilevel block factorization preconditioners. The former
relies on coarse grids and interpolation operators that match the problem being solved. The
latter uses general purpose ILU or sparse approximate inverse techniques. HBBF utilizes
a simple interpolation technique. When this interpolation is e�ective, the multilevel block
factorization is economical to carry out; when it is less e�ective, the method relies more
on the block factorization to compute an accurate preconditioning. HBBF can also be used
to de�ne a multigrid method, which we call BFMG. In Section 2, these ideas will be made
precise. Section 3 reports numerical results that illustrate the behaviour of the multilevel block
factorization with and without the generalized HB transformation.
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2. HIERARCHICAL BASIS BLOCK FACTORIZATION

2.1. Hierarchical basis transformation
For simplicity, we will only discuss the hierarchical basis transformation for two levels; the
multilevel case is de�ned recursively. Consider the symmetric positive de�nite linear system
in the nodal basis, Ax= b, and a partitioning of the variables and corresponding equations
into two sets, called �ne and coarse. The partitioning induces the block form(

A� Afc
Acf Acc

)(
xf
xc

)
=

(
bf
bc

)
(1)

where the subscripts (:)f and (:)c indicate the �ne and coarse sets, respectively.
A hierarchical basis transformation J transforms a vector from a hierarchical basis to a

nodal basis. We consider hierarchical basis transformations of the form

J=

(
I P

0 I

)
(2)

where the partitioning of J is the same as the partitioning of A. In classical hierarchical basis
methods, P is a matrix with two non-zero entries of 1=2 in each row, corresponding to the
contribution of the coarse grid basis vectors to the �ne variable. Our choice of P will be
discussed below.
Given the transformation J, the linear system to be solved in the hierarchical basis is

Âx̂= b̂ (3)

where Â=JTAJ and b̂=JTb, with the solution in the nodal basis being recovered by x=Jx̂.
The matrix Â has the block form (

Â� Âfc

Âcf Âcc

)
(4)

where

Â� = A�

Âfc = A�P+ Afc

Âcf =PTA� + Acf

Âcc =PTA�P+ AcfP+PTAfc + Acc

and

b̂f = bf

b̂c =PTbf + bc

xf = x̂f +Px̂c

xc = x̂c

Published in 2002 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:105–127
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If P≈−A−1
� Afc, then the o�-diagonal blocks Âfc and Âcf are almost zero, i.e. the matrix is

almost block diagonal. Finally, an important property is that the inverse HB transformation

J−1 =

(
I −P

0 I

)
is sparse and thus the preconditioning in the hierarchical basis is easily transformed back to
the nodal basis.
From the implementation point of view, the transformed matrix Â, which is generally denser

than the nodal basis matrix, does not need to be formed to construct the preconditioner.
The matrix P is analogous to the coarse-to-�ne prolongation mapping in AMG. Our aim in

the remainder of this subsection is to establish some choices of P for the HBBF preconditioner.

2.1.1. Coarsening. In AMG, coarsening refers to the partitioning of the variables into �ne
and coarse sets. Almost all coarsening algorithms rely on some determination of whether a
coupling between two variables is ‘strong’ or ‘weak’. From there, the algorithms may choose
the coarse set to be a set of variables that do not have any strong couplings between them.
In graph theory terminology, this is called an independent set.
In AMG de�ned in Reference [15] (motivated mostly for M -matrices), a variable xi is

strongly coupled to xj if

−aij¿�s max
k �=i

{−aik} (5)

where 0¡�s61 is called the strength threshold. We additionally say that for �s=0, xi is
strongly coupled to xj if aij¡0.
The algorithms in this paper perform coarsening by using this de�nition of strong coupling.

An independent set of variables that are not connected via a strong couplings is then selected
as the coarse set.
Coarsening procedures are also used in some multilevel block factorizations to de�ne the

variables that form the next level. Here, an objective may be to select the �ne set such that
A� is diagonally dominant so that relaxations or solves with this matrix are e�cient [16–18].
These procedures, however, do not necessarily try to assure that the coarse set provides good
interpolation for the �ne grid problem.

2.1.2. Interpolation. Once the coarse and �ne sets have been chosen, interpolation de�nes
the weights in the matrix P. The de�nition of strong couplings is also used here to de�ne
which coarse variables contribute to which �ne variables in the hierarchical basis.
Let the ‘smooth vector’ e denote a vector from the ‘smooth’ part of the spectrum of A,

i.e. Ae≈ 0. For scalar elliptic PDEs, e can be the vector of all ones. Further let ef and ec
denote the components of e on the �ne and coarse variables, respectively. It is desirable that
P properly interpolates these smooth vectors, i.e.

Pec= ef (6)

For a single vector e, this can always be exactly satis�ed by scaling the rows of P. Combined
with Ae≈ 0, condition (6) leads to

Âccec=

(
P

I

)T
A

(
P

I

)
ec=(PTA�P+ AcfP+PTAfc + Acc)ec≈ 0 (7)
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which means that the smooth vector e is preserved in the near-nullspace of Âcc. Thus, as a
coarse grid operator, Âcc approximates the behavior of A, at least for the vector e.
A simple interpolant that satis�es (6) for e=(1) and that does not depend on matrix values

is the averaged piecewise constant or equally weighted interpolant. Given an ordering of the
�ne and coarse variables, this interpolant is de�ned as

Pij=

{
1=di the ith �ne variable is strongly coupled to the jth coarse variable
0 otherwise

where di is the number of coarse variables that are strongly coupled to variable i.
Note that all strong couplings are used in this interpolant. In some cases, some of these

strong couplings are redundant and can be neglected. In References [4–7], only two or three
couplings for each �ne variable are used in the generalized hierarchical basis transformation.
In Section 3.6, we experiment with interpolating from the single strongest coupling (the largest
negative matrix entry, corresponding to a piecewise constant interpolant, denoted by P1), and
with interpolating from the two strongest couplings (denoted by P2), in order to reduce the
cost of the HB transformation.
More sophisticated choices for P can be used. For example, if access to the geometric

coordinates of the �ne grid points is available, one needs at least 2 (in 2-D) or 3 (in 3-D)
strongly coupled coarse nodes to interpolate linear functions exactly [19]. This will generally
change the weights of P in the above formula.

2.2. Approximate block factorization

2.2.1. Approximate block factorization in the nodal basis. Given a partitioning of the vari-
ables into �ne and coarse sets, the approximate block LU factorization of the matrix A in the
nodal basis is (

A� Afc
Acf Acc

)
≈
(
A� 0
Acf S

)(
I −P
0 I

)
(8)

where S ≈Acc−AcfA−1
� Afc is an approximation to the Schur complement and P is an approx-

imation to −A−1
� Afc. To solve approximately with this factorization, solves with A� and S are

required, either of which may be performed exactly or approximately.
The multilevel factorization recursively applies this factorization to S [20–23]. In order for

this process to be economical, a sparse approximation to S is typically needed. There are
many proposed approximations to S, including several based on multigrid ideas [24–27, 7].
Approximations based on algebraic techniques are of interest in general settings. For example,
the following approximations are possible.

• S1 =Acc − Acf Ã−1
� Afc, where Ã

−1
� is a sparse approximation to A−1

� .
• S2 =Acc + AcfP where P is a sparse approximation to −A−1

� Afc, which may or may not
be the same as the P in (8). This construction of S2 is not necessarily symmetric.

• S3 = (PT; I)A(PI ), where P is again a sparse approximation to −A−1
� Afc. We refer to

this as the Galerkin form. The matrix S3 is positive de�nite if A is positive de�nite. In
addition, S3 is the exact Schur complement if P=−A−1

� Afc.
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• Given an ILU factorization partitioned in the same way as (8), i.e.(
A� Afc
Acf Acc

)
≈
(
L� 0
Lcf Lcc

)(
U� Ufc
0 Ucc

)
(9)

we have the approximation S4 =Acc − LcfUfc. This approximation can be created from a
partial ILU factorization (the factors Lcc and Ucc are not computed) [22].

Once an approximation S has been computed on each level, Algorithm 1 may be used to
approximately solve (1) using a multilevel approximate block factorization. The algorithm is
written in a way to show its similarity to multigrid methods. The algorithm assumes that P

in (8) has the form −Ã−1
� Afc.

Algorithm 1: BF, approximate solution of (1) using a multilevel block factorization.

1: bH = bc − Acf Ã−1
� bf

2: Solve Sxc= bH recursively, with an exact solve on the �nal level

3: xf=−Ã−1
� Afcxc

4: xf= xf + Ã−1
� bf

In the algorithm, bH can be interpreted as the restriction of b onto a coarse grid. The
restriction and prolongation operators are

(−Acf Ã−1
� ; I) and

−Ã−1
� Afc

I


respectively. The actions of Ã−1

� (required in steps 1 and 3) can be viewed as F-smoothing
[28].
Unlike multigrid methods, approximate block factorization preconditionings do not give

scalable convergence rates because, in general, S is not a suitable coarse grid operator: smooth
vectors of A may not be preserved in the near-nullspace of S (see Section 2.1.2). However,

if S is constructed as Acc − Acf Ã−1
� Afc, then the row-sum condition

Ã−1
� A� ef ≈ ef (10)

on Ã−1
� leads to Sec≈ 0 being satis�ed. The row-sum condition on the approximate inverse is

not easy to satisfy, however.

2.2.2. Approximate block factorization in a hierarchical basis. In HBBF, the approximate
block factorization is performed in the hierarchical basis. Given the matrix Â in the block
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form (4), its approximate block LU factorization is(
Â� Âfc

Âcf Âcc

)
≈
(
Â� 0

Âcf Ŝ

)(
I −P̂
0 I

)
(11)

where Ŝ ≈ Âcc− Âcf Â
−1
� Âfc is an approximation to the Schur complement and P̂ is an approx-

imation to −Â−1
� Âfc. We note that the exact Schur complement of the transformed matrix is

equal to the exact Schur complement of A in the nodal basis, i.e.

Âcc − Âcf Â
−1
� Âfc=Acc − AcfA−1

� Afc (12)

In this paper, for SPD problems, we focus on Schur complement approximations in Galerkin
form. We thus de�ne the following three approximations to the Schur complement.

De�nition 2.1
Âcc≡PTA�P+ AcfP+PTAfc + Acc, where P was de�ned in Section 2.1.2.

With the addition of pre- and post-smoothing steps, this leads to a method similar to the
hierarchical basis multigrid method, HBMG [28].

De�nition 2.2
S ≡PTA�P + AcfP + PTAfc + Acc, where P is some approximation to −A−1

� Afc.

This approximate Schur complement is de�ned for approximate block factorizations in the

nodal basis. If P has the form −Ã−1
� Afc, then

S=Acc + Acf Ã−1
� A� Ã

−1
� Afc − 2Acf Ã−1

� Afc (13)

De�nition 2.3
Ŝ ≡ P̂TÂ� P̂ + Âcf P̂ + P̂TÂfc + Âcc, where P̂ is some approximation to −A−1

� Âfc.

This approximate Schur complement is de�ned for approximate block factorizations in a

hierarchical basis. If P̂ has the form −Ã−1
� Âfc, then

Ŝ= Âcc + Âcf Ã−1
� A� Ã

−1
� Âfc − 2Âcf Ã−1

� Âfc (14)

If the generalized hierarchical basis transformation is good, then the terms Âcf and Âfc in
(14) will be small and Âcc≈ Ŝ will be a good coarse grid operator. The approximation Ŝ is
generally an improvement over Âcc, especially when the transformation is poor.
Further, if the terms Âcf and Âfc are smaller in some sense than the terms Acf and Afc, then

Ŝ depends less on the accuracy of Ã−1
� than S does. However, if Ã−1

� is very accurate, then

the approximations Ŝ and S have similar quality; they all approximate well the exact Schur
complement.
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Proposition 2.1

Assume that P̂ has the form −Ã−1
� Âfc and for some vector e=[

ef
ec
] let the following properties

hold:

• Ae≈ 0 and in particular, A� ef + Afcec≈ 0, that is, e is in the near-nullspace of A. Such
vectors are commonly referred to as smooth vectors in AMG.

• The generalized HB transformation preserves e, that is, ef=Pec.

Then, the approximate Schur complement Ŝ contains ec in its near-nullspace, that is,
Ŝec≈ 0.
Proof
This property is seen from the identity

Ŝ=

(
P̂

I

)T
Â

(
P̂

I

)

and the fact that

P̂ec=−Ã−1
� Âfcec≈ 0

The latter holds since Âfcec=(A�P+ Afc)ec=A� ef + Afcec≈ 0. Hence

Ŝec ≈
(
P̂

I

)T
Â

[
0

ec

]

≈
(
P̂

I

)T [ 0

Âccec

]

≈ Âccec

≈
[
P

I

]T
A

[
P

I

]
ec

=

[
P

I

]T
Ae

≈ 0

Given an approximation Ŝ to the Schur complement, Algorithm 2 may be used to approx-
imately solve (1) using a multilevel approximate block factorization in a hierarchical basis.
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Note that the transformed matrix is not stored. The algorithm for the solution in the nodal

basis is recovered if P=0. The algorithm assumes that P̂ has the form −Ã−1
� Âfc

Algorithm 2: HBBF, approximate solution of (1) using a multilevel block factorization in a
generalized hierarchical basis.

1: xf= Ã−1
� bf

2: Solve Ŝxc= {bc+PT(bf−A� xf)−Acf xf} recursively, with an exact solve on the �nal
level

3: xf= xf − Ã−1
� {A�Pxc + Afcxc}+Pxc

Remark 2.1
It is clear that step 3 of Algorithm 2 can be rewritten as

xf= xf + [(I − Ã−1
� A� )P− Ã−1

� Afc]xc

Hence, the expression

P̃≡ (I − Ã−1
� A� )P− Ã−1

� Afc=P+ P̂ (15)

can be viewed as a modi�ed interpolation matrix. Note that, in the setting of Proposition 2.1,
the modi�ed interpolation matrix satis�es P̃ec= ef. Finally, it is also clear that a better quality

Ã−1
� implies less importance of the HB transformation matrix P (the weight (I − Ã−1

� A� ) is
small in that case).

2.2.3. Approximating A−1
� Âfc. The e�ciency of HBBF depends critically on how P̂≈

−A−1
� Âfc is computed. This choice may be related to the method chosen to solve with

A� . The following are some of the options. Similar comments apply to the approximation
P≈−A−1

� Afc.
Incomplete factorization. It is popular to use an incomplete factorization L�U� ≈A� to

solve approximately with A� . The matrix P̂=(L�U� )−1Âfc, however, will generally be dense,
and thus it is necessary to drop small entries. Since P̂ is usually constructed column-by-
column, we drop an entry P̂ij if it satis�es

|P̂ij|6�pmax
k

|P̂kj| (16)

where �p is a truncation threshold.
Incomplete factorization with sparse approximate solves. The above strategy utilizing the

incomplete factorization is still very costly. Instead of computing (L�U� )−1Âfc and then drop-
ping small entries, a sparse P̂ may be computed directly. We use the ‘level 0’ strategy
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described in [29], where the sparsity pattern of the approximate (L�U� )−1Âfc is restricted to
the pattern of Âfc. For L�U� x= b where b is sparse, this strategy only uses the non-zeros in
rows and columns of L� and U� corresponding to non-zeros in b; the other non-zeros are
neglected. Each sparse approximate solve performed this way is much cheaper than a full
triangular solve.
Sparse approximate inverses. A variety of techniques are available for approximating a

symmetric positive de�nite A−1
� by GTG, where G is sparse and approximates the inverse of

the lower triangular Cholesky factor, L, of A� [30–32]. We restrict the pattern of G to the
pattern of the lower triangular part of A� and perform the minimization

min
G

‖I −GL‖2F

The matrix L does not need to be known, and the minimization is easily performed in parallel
if necessary. The product GTGÂfc is sparse and is e�cient to compute.
The matrix P̂=−GTGÂfc may still contain too many non-zeros for HBBF to be e�cient.

Thus, we apply the same dropping scheme described by the inequality (16) above.
For non-symmetric A� , non-symmetric factorizations are available, as well as non-factorized

forms of the sparse approximate inverse [33–35]. We mention in passing that for non-

factorized sparse approximate inverses, it is possible to �nd M = Ã−1
� such that the row-sum

condition (10) is satis�ed. A matrix M satisfying this condition can be found by adding a
constraint to the usual Frobenius norm minimization, i.e.

min
M

‖I −MA� ‖F ; MA� ef= ef (17)

However, whether or not the constraint is well-de�ned depends on the sparsity pattern of M ;
see Reference [36].
Frobenius norm minimization for P̂. The matrix P̂ may be de�ned by performing the

minimization

min
P̂

‖A� P̂ + Âfc‖F

which is discussed in Reference [37]. The algorithm used here is di�erent than the algorithms
used to compute a sparse approximate inverse in factorized form, and is substantially more
costly when columns of Âfc or P̂ contain many non-zeros. To reduce the cost of this step, we
replace Âfc by a sparser matrix where small entries in Âfc have been dropped. The dropping
is performed in the same way entries in P̂ are dropped via (16). The dropping parameter is
also called �p in this case. We choose the sparsity pattern of P̂ to be the sparsity pattern of
Âfc after dropping.

2.3. A multigrid method based on the approximate block factorization

As mentioned, the approximate block factorization sets up a structure very similar to that
of multigrid methods. Once the approximate block factorization is constructed, the multigrid
method described in Algorithm 3 can be de�ned. The method uses the Ŝ matrices as coarse
grid operators at each level, and the P̃=P + P̂ matrices (see (15)) in the prolongation and
restriction operators.
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Algorithm 3: BFMG, a multigrid method based on approximate block factorization for solving
Ax= b.

1: Relax Ax= b using HBBF de�ned at the current level, with x=0 initially
2: Construct the residual r= b− Ax.
3: Restrict the residual using rH =(P̃T; I)r
4: Solve ŜeH = rH recursively, with an exact solve on the �nal level
5: Prolong the error using e=(P̃T; I)TeH

6: Correct the approximate solution x= x + e
7: Relax Ax= b using HBBF de�ned at the current level

3. NUMERICAL INVESTIGATIONS

The main goal of this section is to numerically compare the multilevel block factorization
preconditioner with and without the generalized hierarchical basis transformation (the HBBF
and BF preconditioners, respectively). We also test BFMG as a solver and as a preconditioner.
We primarily use 2-D isotropic and anisotropic test problems with various mesh sizes, but
include results on some di�cult 3-D elasticity problems as well. We initially compare the
convergence rate and scalability of the preconditioners with respect to some of the major
options available, such as for Schur complement approximation, and then examine timings
and storage requirements for the more competitive options.
The 2-D test problems are �nite element discretizations of

auxx + buyy =f in �= (0; 1)2

u=0 on @�

where the right-hand side f was chosen randomly. For the anisotropic problems, the PDE
coe�cients were a=1 and b=1000. Linear triangular elements were used. The matrices were
generated by a code by Stan Tomov (Texas A&M University).
Table I shows the number of equations n and the number of non-zeros nnz in the test

matrices. The same grids were used for both the isotropic and anisotropic problems. The grids

Table I. Isotropic (UNI) and anisotropic (ANI) test matrices, showing number of
equations n, and number of non-zeros nnz.

Problem n nnz

UNI2/ANI2 231 1491
UNI3/ANI3 861 5781
UNI4/ANI4 3321 22761
UNI5/ANI5 13041 90321
UNI6/ANI6 51681 359841
UNI7/ANI7 205761 1436481
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Table II. Iteration counts for the isotropic problems UNI2–UNI5 using
BF and HBBF preconditioners with 4 levels.

IC(0), no smoothing IC(0), one smoothing step

UNI2 UNI3 UNI4 UNI5 UNI2 UNI3 UNI4 UNI5
BF(S) 12 19 31 55 BF(S) 8 12 18 32
HBBF(Âcc) 28 33 41 43 HBBF(Âcc) 10 12 15 16
HBBF(S) 11 13 19 32 HBBF(S) 6 9 15 26
HBBF(Ŝ) 11 13 14 15 HBBF(Ŝ) 5 7 7 8

Modi�ed IC(0), no smoothing IC(1), no smoothing

UNI2 UNI3 UNI4 UNI5 UNI2 UNI3 UNI4 UNI5
BF(S) 12 16 18 21 BF(S) 8 11 15 24
HBBF(Âcc) 12 16 19 21 HBBF(Âcc) 26 31 38 40
HBBF(S) 12 16 19 22 HBBF(S) 7 8 10 13
HBBF(Ŝ) 12 16 18 19 HBBF(Ŝ) 7 8 9 10

were successively generated by grid re�nement. The ordering of the matrices is such that the
equations generated by each grid re�nement were appended to the end of the previous matrix.
We note that this ordering is generally not ideal for many preconditioners.
The storage required by the preconditioners is expressed in terms of grid and operator

complexities. These terms are common in the AMG literature, e.g. Reference [38]. Grid
complexity is the total number of grid points, on all grids, divided by the number of grid
points on the �nest grid. Operator complexity is the total number of non-zero entries, in
all coarse and �ne grid matrices, divided by the number of non-zero entries in the �ne grid
matrix.
BF and HBBF were accelerated by the conjugate gradient method. A zero initial guess was

used, and the iterations were stopped when the preconditioned residual norm was decreased by
12 orders of magnitude. The experiments were run on a Linux 1.5 GHz Intel Xeon computer
with 256 kbytes of cache memory and 512 Mbytes of main memory.

3.1. Convergence rate and scalability

In this section we investigate the convergence rate and scalability of BF and HBBF with
respect to the Schur complement approximations described in Section 2.2.2, the use of pre-
and post-smoothing at each level, ‘modi�ed’ (row-sum preserving) approximations for A� ,
and the accuracy of the A� solve.
Tables II and III show iteration counts for BF and HBBF when the number of levels

was �xed at 4. For larger problems, the size of the coarsest grid is larger, which in�uences
computation time, but these tables allow a comparison of convergence rate when the number
of levels is �xed.
The strength threshold �s was 0.1, and the truncation threshold �p was 0.01. The matrix A�

was approximated by a level 0 or level 1 incomplete Cholesky factorization, as indicated in
the tables. To approximate P or P̂, the incomplete factorization for A� (without approximate
solves) was used. The smoother, if used, was symmetric Gauss-Seidel.
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Table III. Iteration counts for the anisotropic problems ANI2–ANI5 using BF and
HBBF preconditioners with 4 levels.

IC(0), no smoothing IC(0), one smoothing step

ANI2 ANI3 ANI4 ANI5 ANI2 ANI3 ANI4 ANI5

BF(S) 16 22 28 44 BF(S) 10 14 17 25
HBBF(Âcc) 35 53 65 80 HBBF(Âcc) 16 24 32 40
HBBF(S) 14 18 18 27 HBBF(S) 8 11 14 22
HBBF(Ŝ) 13 17 16 18 HBBF(Ŝ) 8 9 9 10

Modi�ed IC(0), no smoothing IC(1), no smoothing

ANI2 ANI3 ANI4 ANI5 ANI2 ANI3 ANI4 ANI5

BF(S) 16 22 23 28 BF(S) 9 14 13 19
HBBF(Âcc) 36 60 72 93 HBBF(Âcc) 33 50 61 74
HBBF(S) 14 21 21 27 HBBF(S) 8 12 11 13
HBBF(Ŝ) 14 21 22 27 HBBF(Ŝ) 8 12 11 12

The following observations may be made:

• In all cases, HBBF(Ŝ) shows better convergence rate and scalability compared to the
other preconditioners.

• Adding a pre- and post-smoothing at each level improves the performance of all the
preconditioners, especially HBBF(Âcc). Without smoothing, HBBF(Âcc) is similar to a
simple coarse grid correction.

• HBBF(Âcc) with smoothing is very similar to the HBMG method [2]. The results show
that the choice of coarse grid and P make HBBF(Ŝ) a better method here.

• Using modi�ed approximations for A� improves BF, as veri�ed in the tables. However,
the next subsection shows that it is too costly to apply an incomplete factorization
to approximate A−1

� Afc, and thus modi�ed approximations may not be readily used in
general.

• Increasing the accuracy of the A� solve using IC(1) reduces the di�erence between the
results for HBBF(S) and HBBF(Ŝ), as expected.

In the remainder of this paper, BF refers to BF(S) and HBBF refers to HBBF(Ŝ).

3.2. Approximations for P̂

The techniques for approximating P̂=A−1
� Âfc described in Section 2.2.3 are compared in

Table IV. Results are shown for HBBF using the UNI6 test problem. The strength threshold
�s=0 was used in these tests, and the recursion to the next level was stopped when the coarse
grid matrix contained fewer than 100 equations. To solve with A� , IC(0) factorizations were
used in the �rst two subtables, and factorized sparse approximate inverses were used in the
last two subtables.
The table shows that sparse approximate inverse approximations for A−1

� and incomplete
factorizations with sparse approximate solves both lead to good overall timings. Sparse
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Table IV. HBBF with UNI6 problem: comparison of techniques for approximating A−1� Âfc.

Incomplete factorization for A�

Time (s) Complexity

�p Levels Iterations Setup Solve Total Grid Operator

0.003 4 17 68.91 1.24 70.15 1.31 4.20
0.010 4 18 65.44 1.13 66.57 1.31 3.55
0.030 4 21 63.21 1.19 64.40 1.32 2.97
0.100 5 45 60.92 2.17 63.09 1.33 2.35
0.300 5 103 60.22 4.22 64.44 1.35 1.84

Incomplete factorization for A� with sparse approximate solves

Time (s) Complexity

Levels Iterations Setup Solve Total Grid Operator

5 72 1.28 3.30 4.58 1.33 2.23

Sparse approximate inverse for A−1
�

Time (s) Complexity

�p Levels Iterations Setup Solve Total Grid Operator

0.003 4 28 3.50 1.65 5.15 1.32 3.21
0.010 4 27 3.05 1.56 4.61 1.32 3.06
0.030 4 28 2.40 1.54 3.94 1.32 2.78
0.100 5 45 1.70 2.23 3.93 1.33 2.34
0.300 5 108 1.13 4.68 5.81 1.35 1.82

Frobenius norm minimization for P̂

Time (s) Complexity

�p Levels Iterations Setup Solve Total Grid Operator

0.003 5 97 4.64 4.46 9.10 1.35 2.22
0.010 5 98 3.76 4.50 8.26 1.35 2.19
0.030 5 98 2.90 4.45 7.35 1.35 2.16
0.100 5 100 2.23 4.52 6.75 1.35 2.11
0.300 5 108 1.62 4.78 6.40 1.35 2.02

approximate triangular solves greatly reduce the setup timing when incomplete factorizations
are used. The accuracy of the Frobenius norm approximation, however, is poor, unless better
and much more costly sparsity patterns for P̂ are used.

3.3. Timings for UNI7 and ANI7

This section reports detailed timings for the large UNI7 and ANI7 test problems using a
variety of values for the thresholds �s and �p. Unfortunately for these methods, there is not
a simple way to choose these thresholds that will give the lowest total computation time.
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Table V. Results for the isotropic UNI7 with BF preconditioning.

Time (s) Complexity

�s �p Levels Iterations Setup Solve Total Grid Operator

0.00 0.01 5 409 4.72 55.66 60.38 1.33 2.32
0.03 6 410 3.96 54.07 58.03 1.34 2.11
0.10 6 419 3.14 52.68 55.82 1.35 1.85
0.30 7 492 2.36 57.91 60.27 1.39 1.57

0.25 0.01 8 323 9.28 52.04 61.32 1.51 3.87
0.03 9 327 6.27 48.24 54.51 1.51 3.17
0.10 9 337 4.05 45.96 50.01 1.51 2.48
0.30 10 395 2.90 50.54 53.44 1.52 1.97

0.50 0.01 10 238 25.70 50.78 76.48 1.73 8.13
0.03 10 241 13.70 45.33 59.03 1.73 6.16
0.10 11 261 5.80 39.93 45.73 1.74 3.66
0.30 12 305 4.03 43.48 47.51 1.75 2.86

0.75 0.01 12 164 45.52 43.73 89.25 1.92 13.58
0.03 12 165 20.08 36.10 56.18 1.92 9.61
0.10 13 198 6.68 33.34 40.02 1.93 4.96
0.30 13 271 4.44 40.69 45.13 1.93 3.64

0.95 0.01 14 95 58.51 32.81 91.32 2.00 16.09
0.03 14 104 22.72 24.73 47.45 2.00 11.08
0.10 14 155 7.51 27.94 35.45 2.00 5.77
0.30 14 255 4.54 40.31 44.85 2.00 3.83

A sparse approximate inverse was used in the approximation for A−1
� Âfc and for solving with

A� . Like before, the recursion to the next level was stopped when the coarse grid matrix
contained fewer than 100 equations. Further, no smoothing was added to the BF and HBBF
algorithms. Results of additional experiments (not shown here) revealed that the addition of
smoothing usually increased the overall timings for these problems.
Four tables are shown: Tables V and VI show results using BF and HBBF for the isotropic

problem UNI7, and Tables VII and VIII show these results for the anisotropic problem ANI7.
For a wide range of parameter values, the results clearly show that HBBF has lower iteration
counts and lower total timings than BF for these problems.
For a rough comparison, Table IX reports timings of the same problems solved using

an AMG code called BoomerAMG [39], which is based on algorithms in Reference [15].
BoomerAMG was used as a solver, rather than as a preconditioner. For the problem UNI7,
BoomerAMG is faster than HBBF (accelerated by CG), but the fastest timing for HBBF is
comparable. For the problem ANI7, the best timings for HBBF are better than the timing for
BoomerAMG.

3.4. Algorithmic scalability

For problems in 2-D, the iteration counts for hierarchical basis methods scale with the square
of the number of levels. The following results verify this theory by showing iteration counts
for increasing problem sizes. Again, the recursions were stopped when the size of the coarse
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Table VI. Results for the isotropic UNI7 with HBBF preconditioning.

Time (s) Complexity
�s �p Levels Iterations Setup Solve Total Grid Operator

0.00 0.01 5 31 13.43 7.81 21.24 1.33 3.16
0.03 5 33 10.56 7.94 18.50 1.33 2.87
0.10 5 80 7.39 17.18 24.57 1.33 2.40
0.30 6 212 4.98 40.67 45.65 1.36 1.87

0.25 0.01 7 22 23.67 6.58 30.25 1.51 5.35
0.03 7 40 15.33 10.45 25.78 1.51 4.38
0.10 8 94 9.40 21.32 30.72 1.51 3.29
0.30 9 181 6.22 36.29 42.51 1.51 2.42

0.50 0.01 10 23 54.47 9.03 63.50 1.72 10.72
0.03 10 44 28.03 14.41 42.44 1.72 8.03
0.10 10 96 14.31 25.79 40.10 1.72 5.30
0.30 11 183 9.34 41.42 50.76 1.73 3.63

0.75 0.01 12 25 85.13 22.10 107.23 1.92 16.86
0.03 12 48 37.48 17.90 55.38 1.92 12.45
0.10 13 111 14.69 30.35 45.04 1.93 6.76
0.30 13 188 9.68 45.66 55.34 1.93 4.78

0.95 0.01 14 27 119.53 21.98 141.51 2.00 17.73
0.03 14 53 31.25 19.63 50.88 2.00 12.72
0.10 14 122 12.44 32.81 45.25 2.00 6.68
0.30 14 212 8.18 49.30 57.48 2.00 4.51

Table VII. Results for the anisotropic ANI7 with BF preconditioning.

Time (s) Complexity
�s �p Levels Iterations Setup Solve Total Grid Operator

0.00 0.01 7 975 7.53 158.37 165.90 1.62 3.62
0.03 8 978 6.15 152.64 158.79 1.63 3.24
0.10 8 911 4.74 134.55 139.29 1.68 2.85
0.30 9 894 3.15 121.73 124.88 1.76 2.35

0.25 0.01 10 321 15.81 62.65 78.46 1.86 6.47
0.03 10 327 10.19 58.36 68.55 1.86 5.30
0.10 10 355 6.28 56.82 63.10 1.86 3.97
0.30 11 455 3.49 63.94 67.43 1.87 2.62

0.50 0.01 11 209 23.29 45.33 68.62 1.91 8.05
0.03 11 219 13.70 41.96 55.66 1.91 6.38
0.10 11 249 7.53 41.77 49.30 1.91 4.55
0.30 12 371 3.79 53.58 57.37 1.91 2.80

0.75 0.01 12 219 37.89 56.49 94.38 1.97 11.98
0.03 12 229 19.27 50.69 69.96 1.97 8.90
0.10 13 265 8.19 48.00 56.19 1.97 5.57
0.30 13 386 3.73 58.42 62.15 1.98 3.07

0.95 0.01 14 243 56.17 77.46 133.63 2.02 15.79
0.03 14 249 24.17 61.32 85.49 2.02 11.05
0.10 14 278 9.37 53.59 62.96 2.02 6.42
0.30 14 476 3.75 73.94 77.69 2.02 3.16
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Table VIII. Results for the anisotropic ANI7 with HBBF preconditioning.

Time (s) Complexity

�s �p Levels Iterations Setup Solve Total Grid Operator

0.00 0.01 5 387 31.07 123.17 154.24 1.59 5.26
0.03 6 385 20.77 111.05 131.82 1.60 4.54
0.10 6 385 13.27 98.95 112.22 1.62 3.74
0.30 7 655 8.84 151.25 160.09 1.68 3.17

0.25 0.01 9 33 41.97 12.22 54.19 1.86 9.49
0.03 9 35 25.48 11.19 36.67 1.86 7.61
0.10 9 72 15.34 19.60 34.94 1.86 5.71
0.30 11 366 10.09 87.29 97.38 1.87 4.37

0.50 0.01 10 22 54.90 8.79 63.69 1.90 11.57
0.03 10 24 33.44 8.32 41.76 1.90 9.32
0.10 11 65 18.49 18.47 36.96 1.91 6.76
0.30 11 197 11.65 48.84 60.49 1.91 5.02

0.75 0.01 12 22 121.21 15.58 136.79 1.97 16.86
0.03 12 26 44.87 10.41 55.28 1.97 12.97
0.10 12 67 22.16 21.32 43.48 1.97 8.90
0.30 13 184 11.56 47.58 59.14 1.97 5.72

0.95 0.01 14 22 127.40 27.52 154.92 2.02 20.33
0.03 14 30 47.18 15.43 62.61 2.02 15.08
0.10 14 83 21.95 27.96 49.91 2.02 9.64
0.30 14 250 10.98 66.11 77.09 2.02 5.67

Table IX. AMG results using a V(1,1) cycle with CF Gauss–Seidel
relaxation, and strength threshold 0.25.

Time (s) Complexity

Problem Levels Iterations Setup Solve Total Grid Operator

UNI7 11 21 4.55 9.53 14.08 1.87 2.94
ANI7 12 139 3.83 57.59 61.42 1.91 3.04

grid problem was less than 100 equations, and the same approximations for A� and P̂ as
those in Section 3.3 were used. Table X tabulates the results and Figure 1 plots the iteration
counts as a function of the square of the number of levels.

3.5. Multigrid based on the approximate block factorization

Section 2.3 described BFMG, a multigrid method de�ned using an approximate block factor-
ization. The smoother for BFMG is the block factorization HBBF recursively de�ned at each
level (HBBF smoothing). The smoother may be accelerated by the conjugate gradient method
(CG-HBBF smoothing) if necessary. Further, BFMG itself may be used as a preconditioner
to the conjugate gradient method (CG-BFMG). Table XI shows iteration counts and timings
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Table X. HBBF results for increasing problem sizes.

Time (s) Complexity

Levels Iterations Setup Solve Total Grid Operator

UNI2-UNI7, �s= 0; �p= 0:03
UNI2 2 16 0.01 0.00 0.01 1.17 1.60
UNI3 3 19 0.02 0.01 0.03 1.24 2.09
UNI4 3 23 0.10 0.06 0.16 1.28 2.42
UNI5 4 25 0.52 0.29 0.81 1.31 2.65
UNI6 4 28 2.39 1.53 3.92 1.32 2.78
UNI7 5 33 10.72 7.93 18.65 1.33 2.87

ANI2–ANI7, �s= 0:25; �p= 0:03
ANI2 2 11 0.00 0.01 0.01 1.33 2.08
ANI3 4 14 0.03 0.01 0.04 1.64 4.20
ANI4 5 19 0.19 0.06 0.25 1.75 5.56
ANI5 7 23 1.14 0.36 1.50 1.81 6.66
ANI6 8 28 5.49 2.07 7.56 1.85 7.26
ANI7 9 35 25.83 11.22 37.05 1.86 7.61

for BFMG for the UNI7 and ANI7 test problems. The same approximations for A� and P̂ as
those in Section 3.3 were used. The best timings are achieved when BFMG is used as a pre-
conditioner. It is interesting that when CG-HBBF smoothing is used, the total time decreases
when more smoothing steps are used (up to a limit).
The results show that BFMG timings are somewhat worse than the timings when HBBF is

simply used as a preconditioner for the CG method. However, the number of iterations required
for convergence can be much lower. Overall, BFMG and CG-BFMG tend to be more scalable
in terms of convergence rate, and therefore should be preferred for large problems.

3.6. Elasticity problems

We conclude this section with some tests to illustrate how the BF, HBBF, and BFMG pre-
conditioners may perform on 3-D �nite element elasticity problems. The physical problem
is three concentric spherical shells; two steel shells surround a third shell composed of lu-
cite. An octant of these shells is discretized using linear hexahedral elements with one-point
integration and hourglass damping. Figure 2 illustrates the gridding of this problem using a
very small number of elements. Two test matrices, as listed in Table XII were used. Typical
rows in these matrices contain 81 non-zeros per row. We note that for these problems, the
CG convergence criterion is the reduction of the residual norm by 8 orders of magnitude.
For problems such as these that are derived from systems of PDEs, we consider all couplings

between variables of unlike type to be weak. This corresponds to the ‘unknown’ approach
described in Reference [15]. Also, in the following tests, we used an incomplete Cholesky
factorization to approximately solve with A� . Using a sparse approximate inverse gave poorer
results, but a sparse approximate inverse was still used in the construction of P and P̂.
For matrices with many non-zeros per row, the HB transformed matrices may be very dense

and costly to use. This cost can be reduced with large values of the truncation threshold �p.
In addition, we can use the sparser interpolants, P1 and P2, described in Section 2.1.2. For
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(a) Isotropic problem, UNI7
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(b) Anisotropic problem, ANI7

Figure 1. Plot of iteration count vs square of number of levels. The plots suggest the linear relationship
predicted from theory: (a) Isotropic problem, UN17; (b) Anisotropic problem, AN17.

the problem SPH3103, Table XIII compares BF and HBBF preconditionings, the latter using
the sparser interpolants. Values of �s of 0, 0.25, 0.5, 0.75, and 0.95 were tested; the table
shows the results using �s of 0.25, which were the best for all the preconditioners. Table XIV
shows corresponding results for SPH6206.
The results show that the total solution timings for solves with the BF and HBBF precon-

ditioners are comparable. However, as expected, the iteration counts for HBBF are lower. For
these matrices coming from discretized elasticity problems, we further expect the results to
improve if vectors in the near-nullspace of A (so-called rigid body modes) are preserved in
the interpolation. In our setting, this can be ensured if P interpolates linear functions, that is,
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Table XI. Results related to BFMG for the UNI7 and ANI7 test matrices.

BFMG BFMG CG-BFMG
HBBF smoothing CG-HBBF smoothing HBBF smoothing

Smoothing Total Total Total
steps Iterations time (s) Iterations time (s) Iterations time (s)

UNI7, �s= 0; �p= 0:03
1 40 44.83 36 67.81 12 22.21
2 24 48.36 15 45.53 9 26.81
3 18 52.19 10 41.29 7 29.25
4 14 52.96 6 33.25 6 31.95
5 12 55.62 5 34.48 6 37.04

ANI7, �s= 0:25; �p= 0:1

1 100 154.50 82 233.81 27 55.66
2 64 183.14 23 105.36 20 71.30
3 49 204.09 15 77.52 17 85.54
4 39 214.31 10 79.51 16 102.62
5 33 224.12 8 76.53 14 110.88

Figure 2. Gridding of an octant of three concentric spherical shells; this is
a small example for illustration purposes.

a �ne degree of freedom or node is interpolated from 2 or 3 strongly coupled coarse nodes
in 2-D or 3-D, respectively.
Finally, Table XV shows iteration counts and timings when BFMG is used as a precon-

ditioner. One or two steps of HBBF is used as the smoother for BFMG. The P2 interpolant
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Table XII. Two elasticity test problems, showing num-
ber of equations n, and number of non-zeros nnz.

Problem n nnz

SPH3103 16881 1230831
SPH6206 124839 9586413

Table XIII. Sample results for SPH3103 with BF and HBBF pre-
conditioning. The parameter �s was 0.25.

Time (s) Complexity

�p Levels Iterations Setup Solve Total Grid Operator

BF 0.3 6 296 20.76 14.08 34.84 1.66 2.60
0.5 6 485 3.98 17.47 21.45 1.67 1.86
0.7 6 584 2.55 19.36 21.91 1.67 1.71
0.9 6 548 1.90 17.01 18.91 1.64 1.53

HBBF 0.3 6 197 4.60 9.82 14.42 1.65 1.90
P1 interpolant 0.5 6 265 2.77 11.51 14.28 1.66 1.66

0.7 7 258 2.78 11.09 13.87 1.67 1.63
0.9 7 311 2.56 13.15 15.71 1.69 1.65

HBBF 0.3 6 135 21.14 9.90 31.04 1.64 2.84
P2 interpolant 0.5 6 145 8.52 8.26 16.78 1.65 2.15

0.7 6 190 5.63 9.62 15.25 1.65 1.93
0.9 6 211 4.83 10.33 15.16 1.65 1.87

Table XIV. Sample results for SPH6206 with BF and HBBF pre-
conditioning. The parameter �s was 0.25.

Time (s) Complexity

�p Levels Iterations Setup Solve Total Grid Operator

BF 0.5 9 781 60.39 269.27 329.66 1.79 2.23
0.7 8 903 25.72 259.25 284.97 1.74 1.78
0.9 8 975 16.84 254.29 271.13 1.74 1.58

HBBF 0.5 8 671 33.16 273.23 306.39 1.75 1.76
P1 interpolant 0.7 8 902 28.54 357.88 386.42 1.74 1.70

0.9 8 1338 26.90 524.44 551.34 1.74 1.69

HBBF 0.5 8 434 128.74 278.85 407.59 1.74 2.63
P2 interpolant 0.7 8 501 80.48 265.30 345.78 1.75 2.24

0.9 8 541 69.58 271.44 341.02 1.75 2.14

was used. Like the results shown earlier, the total time to solution is higher, although the
iteration counts are much lower. For the test problem SPH6206, the results were obtained on
a slightly slower (1 GHz EV6.8 Alpha) computer with more memory.
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Table XV. Results for CG preconditioned with BFMG using one or two steps of
HBBF as the smoother. The parameters �s and �p were 0.25 and 0.9, respectively.

SPH3103
Smoothing steps Iterations Total time (s)
1 91 24.73
2 72 34.42

SPH6206
Smoothing Steps Iterations Total time (s)
1 186 452.70
2 146 653.24

4. CONCLUDING REMARKS

This paper has shown that a transformation to a generalized hierarchical basis can lead to im-
proved convergence rates for multilevel block factorization preconditioners. The transformation
is simple, but increases the cost of constructing the preconditioner. The overall time required
to solve unstructured isotropic and anisotropic di�usion problems, is generally reduced.
For matrices with many non-zeros per row, however, the cost of approximate block fac-

torization preconditioners may be very high. This cost is particularly due to the Galerkin
approximation for the Schur complement. In these cases, depending upon the size of the
problem, BF, HBBF, and BFMG may not be competitive with other, albeit less-scalable,
preconditioners.
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